
127 

RESEARCH PAPERS 

Acta Cryst. (1995). D51, 127-135 

Coordinate-Based Cluster Analysis 

BY R. DIAMOND 

MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, England 

(Received 13 June 1994; accepted 19 September 1994) 

Abstract 

A new approach to cluster analysis of structures based 
on collective superpositions rather than pairwise super- 
positions is presented. The method is fast and rigorous 
and is illustrated by application to 21 structures derived 
from NMR experiments. Source code, suitable for most 
laboratory machines, is available from the author, and a 
CCP4 version is in preparation. 

Introduction 
Superposition of coordinates of proteins is a commonly 
used aid to the comparison of related structures. Pairwise 
superpositions have been commonplace for many years, 
but simultaneous superposition of many structures is a 
problem which has only relatively recently been solved: 
Kearsley (1990); Shapiro, Botha, Pastore & Lesk (1992); 
Diamond (1992). In this paper these techniques are 
extended to show how structures may be grouped into 
clusters on the basis of the similarity of their coordinates, 
so as to identify families of similar structures which may 
exist within an ensemble of structures, in a manner which 
is both fast and rigorous. 

Previous solutions to this problem have been of two 
main types: those that generate a tree of structures with 
similar clusters united at each node, and those that 
represent the structures as a distribution of points in 
two or three dimensions, such that the distances between 
such points are a direct measure of the r.m.s, coordinate 
differences between the corresponding structures. Both 
types of method have been limited in the past by 
being based on pairwise superpositions of structures to 
measure the r.m.s, distances between structures, rather 
than collective superpositions. 

In the first type (e.g. Russell & Barton, 1992), clusters 
are represented by the average coordinates of structures 
within a cluster, and successive unions are performed 
by superimposing such averages. This is not ideal be- 
cause the averaging step may degrade stereochemical 
features, and because the average coordinates have to be 
calculated at each step. 

In the second type of method (e.g. Sutcliffe, 1993) the 
use of pairwise superpositions is also not ideal because 
it implies that each structure is allowed a multiplicity of 
coordinate sets, one for each other structure with which 
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it is paired, which can lead to negative eigenvalues and 
imaginary coordinates in the resulting representation. 
Although this is not likely to arise when the structures 
being compared are closely similar, as many as eight 
negative eigenvalues out of 29 have been encountered 
for this reason using this technique. 

It is shown here how clustering may be performed 
rigorously without any reference to coordinates, (except 
during the initialization stage) and without introducing 
any distortions to the structures, by processes which 
involve only transformations and additions of 4 × 4 
matrices. The process leads to a dendrogram, or tree, and 
also, optionally, to one or more constellations of struc- 
tures which are certainly free of negative eigenvalues. 

Theory 

The theory underlying this method is an extension of 
the theory presented by Diamond (1992) for multiple 
simultaneous superpositions and it is necessary, there- 
fore, to quote extensively from that paper. In this paper, 
where two numbers are attached to an equation, the 
first is the number of the corresponding equation in that 
paper, to which reference should be made for the relevant 
derivation. 

Diamond (1988) showed that the weighted sum of 
squares of coordinate differences, E, between a vector 
set X and a rotated vector set R x ,  is given by 

E = E 0 -  2pTpp, (18,1) 

in which E0 is the value associated with X and the 
unrotated x, i.e. for R = I, P is a real symmetric 4 x 4 
matrix bilinear on X and on x, and p is the rotation 
vector specifying the rotation effected by the orthogonal 
3 x 3 matrix R.  p is defined by (i) (siil 0j2,) rosin(O~2) 

P = = n s i n ( 0 / 2 )  ' (1,2) 

cos(O/2) 

for axial direction cosines l, m, n and rotation angle 0. 
Evidently E is minimized if p is the top eigenvec- 

tor of P .  Subsequently, Kearsley (1989) developed an 
equivalent solution using a matrix K given by 
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K = E0I - 2P, 

(Diamond, 1989), in terms of which 

E = pTKp,  

so that the optimal p is the bottom eigenvector of K. P 
and K are equally effective agents for the determination 
of optimal superpositions, but in the current work there 
are advantages to be gained from the use of Kearsley's 
form, which provides for the monitoring of E values 
through many transformations and unions, as well as for 
the determination of p vectors. 

It was shown previously that if structure B is to be 
rotated by pB from its original orientation to superim- 
pose on a structure A which has already been rotated by 
PA, then PB should be the top eigenvector of 

[pA]P BA[#A] T , (23,5) 

or the bottom eigenvector of 

[pA]KBA[PA] T, 

in which 

a -A  . (8,7) 
[P] = A 

- #  - v  

Similarly, if structure A has already been rotated by 
#a and structure B has already been rotated by Or3, and 
if a further rotation, p, is to be applied to structure B, so 
that B's rotation vector relative to its original orientation 
is then 

[p]pB (12,8) 

then this further rotation, p, optimizes the fit of B on A if 

pT [piT [p a ]K BA [pA]T[p]PB (9) 

is minimized. 
Now, the compound rotation [P]PB may be reversed 

by applying ~ followed by PB, i.e., 

i[p]pe = [PB]P = [Pt~]TiP, (6,10) 

so that 

[P]PB = I[pB]TIp, (11) 

in which 

i =  (O 1 0)1 ' (5,12) 

where I is the 3 x 3 identity, and it is convenient to 
(3) define a further type of matrix given by 

(4) (p) = I[PlI = a - A  - #  (13) 
- -  )~ O" - - V  

# V O" 

in terms of which the minimization of (9) becomes the 
minimization of 

pT (pB)[PA]KBA[PA]T (pB)T p, (14) 

SO that the further rotation required for structure B is the 
bottom eigenvector of 

(#B)[OA]KBA[OA] T (#B)  T. (15) 

Like [p], (p) is orthogonal with positive determinant 
and it is shown in the Appendix that (.) matrices concate- 
nate like [.] matrices and that any (.) matrix commutes 
with any [.] matrix. Note that in the development of (15) 
it is immaterial whether PA or PB is applied first provided 
only that both are applied before the further rotation 

(6) p is sought. The counterpart of this in (15) is to note 
that (Pt~) and [PA] may appear in either order because 
these matrices commute. Some further properties of the 
eigenvectors of (15) are also discussed in the Appendix. 

Suppose that clusters C/ and Cj  have already been 
formed containing nl and n j  structures, respectively, 
and let 

q<p m 

Ej  = E Z Z Iral° - raql2' (16) 
pECj qECj a = l  

in which rap and raq are the position vectors of atom a 
in structures p and q in their current orientations within 
the cluster C j, and m is the number of atoms in each 
and every structure. Note that (after summation over a) 1 there are 5 n s ( n j  - 1) terms in (16). Suppose that it 
is proposed to form a new cluster, CK, by rotating the 
entire cluster CI onto cluster C j,  then 

CK = C1 tO Cj  (17) 

nK -- nl + n j,  (18) 

and 

in which 

where 

EK = Et  + E j  + E I j ,  (19) 

EH = p y K t s p l ,  (20) 

K H  = E E (Pi)[Pj]Kij[PJ ]T (pi)T' 
iEC! jECj 

(21) 

in which Pt is the rotation to be applied to the en- 
tire cluster, CI, Pi and pj being the rotations already 
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applied to the individual structures i and j within the 
clusters Ct and Cj in constructing them from their initial 

orientations. Note that (because i 2 = I), 

iK, . , i  = Z Z i(Pi)i'i[PJ]I'IKiji'i[PJ] ri'~(pi)Ti 
iCCI jECj 

= Z Z [Pi](pj>Uji(Pi >T[pi]T 
iCCI jECj 

: ~ Z (P:i)[PilKji[PilT(pj)T 
iECt jEC.t 

= K j I .  (20,22) 

Evidently EK is minimized if PI is the bottom eigen- 
vector of KIj,  E! and E j  may be supposed to be already 
known and EIj is the least eigenvalue of KH. When 
the cluster CK is formed in this way the rotations pj, 
j E C j, are unchanged, whereas the vectors Pi, i E C1, 
are replaced by [Pt]Pi. 

The enantiomorphism test of Diamond (1990) still 
applies to Kt j  and takes the form 

ftmin - Groin = Pl - P2 - P3 + P4 

-- -- (kl - k2 - k3 + k4)/2, (23) 

in which Pl . - .P4 and k l . . .  k4 are the eigenvalues of 
P and K, respectively, arranged in decreasing order. 
Thus, the enantiomorphism of an entire cluster relative 
to another may be detected. 

Clustering consists of determining at each stage which 
two clusters currently existing are the most similar to 
each other, and combining these by superposition. If, for 
a given criterion R, combining clusters I and J to form 
cluster K produces an R value RK, and if combining 
clusters L and M to produce cluster N similarly leads to 
RN, then if RK < RN, cluster K should be formed 
in preference to N because I is more similar to J 
than L is to M. There are, however, several measures 
which may serve as the clustering criterion R, and three 
possibilities are discussed here. Two of these, R1 and R2, 
are measures of the r.m.s, fit of the entire resulting cluster 
K, whilst the third, R4, measures only the r.m.s, inter- 
cluster distance between Ct and Cs to the exclusion 
of intra-cluster terms within CI and Cj. (This notation 
avoids contention with an Ra defined elsewhere by D. 
Neuhaus.) R1 and R2 were defined by Diamond (1992) 
a s  

[ 1 + m  ]1 
R1K = mnK(nK--1)  Z Z Z ]r~p-r~q]2 

pECK qECl< a = l  

pECK qECK a = l  -[ ]1 
- ½mnK(ng -- 1) ' (42,24) 

which is the r.m.s, inter-structure distance, and with 
1 

r--; = ~ ~ rap 
nK pECx 

2 R2K -- Z ]rap -- ~aal 2 
pECK a = l  

which is the standard deviation of the structures about 
their mean. Evidently 

R ~ ( n -  1) _ R~ = Irl 2 - - ] r l  2 (43,26) 
2n 

so that, for n >_ 2, R22½ < R1 <_ 2R2. R4 is given by 

R4K= ( EIj ½ 
\ mn+-nj ) (27) 

The selection of I and J is done by scanning I and J 
to find the least available value of R1K, R2K or R4K, 
according to preference, the structure of the resulting 
tree being somewhat dependent on the choice in ways 
which are outlined below. This scan is limited to the 
lower triangle of arrays such as (33), so that the array 
address of cluster I always exceeds that of cluster J. 

The clustering algorithm which has been implemented 
exists in two variants. The first and simplest form forms 
CK by rotating CI onto Cj without disturbing the 
internal structures of C~ and C j, treating these as rigid. 
Thus, in (19), E1 and Ej are regarded as constants, 
only EIj being negotiable to minimize EK. However, 
El was determined at some previous stage when CI was 
formed, and its value was optimized in the absence of the 
structures in Cs. In the second variant of the algorithm 
it is recognised that a deeper minimum for EK may be 
found if all three terms in (19) are optimized together. 
In this form (19) is still used to determine which cluster 
pair to unite at each stage, but, following union, EK is 
further reduced using the algorithm of Diamond (1992) 
in which the rotations are initialized to pj, j E Cj and to 
[Pt]Pi, i E CI. This step will be referred to as annealing. 
In software terms, it is controlled by setting an upper 
limit to the number of cycles of annealing which, if zero, 
gives the first variant. 

In the simple form the matrices K Ij and the vectors 
p can be developed cumulatively, as illustrated below 
for the case of five structures. We begin by assembling 
an array 

1 2 3 4 5 
1 1 1 1 1 

1 1 K12 KI3 K14 Kl5 
2 1 K21 Kz3 K24 K25 
3 1 K31 K32 K34 K35 
4 1 K41 K42 K43 K45 
5 1 K51 K52 K53 K54 

(28) 
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in which the outer border is the cluster number and the 
inner border is the number of structures in each cluster. 
We also evaluate the smallest eigenvalue of each matrix 
and similarly tabulate these 

1 2 3 4 5 
1 1 1 1 1 
0 0 0 0 0 

1 1 0 Ex2 El3 El4 Ex5 
2 1 0 E21 E23 E24 E25 
3 1 0 E31 E32 E34 E35 
4 1 0 E41 E42 E43 E45 
5 1 0 Es1 E52 E53 E54 

(29) 

If we suppose, for example, that cluster 6 is formed 
from the union of clusters 2 and 5, then the arrays then 
stand as 

1 6 3 4 
1 2 1 1 0 

1 1 K16 K13 K14 
6 2 K61 K63 K64 
3 1 K31 K36 K34 
4 1 K41 K46 K43 

0 

(31) 

which (omitting the last row and column) is 

1 6 3 4 
1 2 1 1 

1 1 
6 2 (K21 + (p5)K51(Ps) T) 
3 1 K31 
4 1 K41 

(K12 + [ps]K15[Ps] T) 

(K32 + [psiK35[ps] 
(K42 + [ps]g4 [p ] 

K13 K14 
(K23 A- (ps)Ksa(ps) T) (K24 A- (p5)K54(P5) T) 

K34 
K43 

(32) 

in which the two outer borders are as before, and the 
third border contains the El values. Initially, each cluster 
contains only one structure and all EI values are zero. 
Scanning the criterion R1, R2 or R4 is based on this 
array and its descendents. 

The Et j  values tabulated in (29) each represent the 
best possible fit of one structure on one other, without 
regard to the remaining (n - 2) structures, and are not 
necessarily all attainable simultaneously. Consequently 
they should be regarded as potential E values. E values 
actually achieved will be denoted by e. 

Having determined Pt, the optimal value of which 
is the bottom eigenvector of the corresponding Kt j ,  to 
superimpose cluster I on cluster J the Jth column of K 
matrices is then replaced by 

KLK = KLj  + [pt]Kt,,[pt] T (30) 

for all L except L = 1, L = J and on abandoned rows, 
where K is the cluster number for the newly-formed 
cluster. The Jth row is then replaced using (20,22) and 
the Ith row and column are abandoned. KLK then has 
the property that its lowest eigenvalue is ELK and the 
corresponding eigenvector, PL, optimally rotates cluster 
L (still a single structure) onto cluster K (currently two 
structures). Similarly Kr, L provides for the rotation of 
cluster K by PK onto cluster L, involving now the 
further rotation of those structures within CK which 
have already been rotated. 

The expression (19) then replaces Ej  in both borders 
of (29), nj  is replaced by nt + n j  and nt is set to zero. 

and the eigenvalue array becomes 

1 1 0 
6 2 E 6  
3 1 0 
4 1 0 

0 0 

1 6 3 4 
1 2 1 1 
0 E6 0 0 

El6 El3 El4 
E61 E63 E64 
E31 E36 E34 
E41 E46 E43 

652 

0 
0 

625 
(33) 

in which E6 = E52 and other entries involving cluster 
6 are the least eigenvalues of the new entries in (32). If 
constellations are also to be calculated (see below) then 
the achieved value e25 = E25 is also recorded as shown. 

Suppose that by repeated application of this process 
cluster 7 is formed by the union of clusters 1 and 3 and 
cluster 8 is formed by the union of clusters 4 and 6, 
then the K array will become 

7 6 4 
2 2 0 1 0 

7 2 K76 K74 
6 2 K67 K64 

0 
4 1 K47 K46 

0 

(34) 
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then 

0 0 

7 2 
8 3 K87 

0 
0 
0 

KTs 

in which, for example, 

K67 =K61 + [p3]K63[P3] T 

:K21  q-(P5)K51(Ps) T 

+ [P3](K~3 + (Ps)K53(ps}T)[p3] T 

K76 = i K 6 7 i  = K12 + [ps]K15[P5] T 

+ + 

K47 =K41 + [p3]K43[P3] :r 

K78 --K76 -~-[P4]K74[P4] T 

+ 

+ + 

h-[p4](K14 q- (pa)Ka4(P3)T)[p4] T, 

(35) 

(36) 

and the eigenvalue array becomes 

7 6 4 
2 2 0 1 0 

E7 E6 0 0 0 

7 2 E7 
6 2 E6 

0 0 
4 1 0 

(} 0 

E67 
e31 
E47 

E76 el3 E74 
E64 

E46 
e52 

e25 
(37) 

then 

7 8 
2 3 0 0 0 

E7 E8 0 0 0 

7 2 E7 E78 el3 (38) 
8 3 Es E87 e24 e25 

0 0 e31 
0 0 e42 e45 
0 0 e52 e54 

in which E7 - E31 and other E values involving 
cluster 7 are the corresponding least eigenvalues in (34), 
Es = E46 + E6, (E4 being zero) and E87 is the least 
eigenvalue of K87. Note that in forming cluster 8, one 
structure, 4, is rotated onto two others, 2 and 5, (which 
comprise cluster 6) and the value of E64 contained in 

(33) and (37) becomes e24at-e54. Such sums are sufficient 
to control clustering, but if constellations are also to be 
calculated then the individual e values are required, and, 
on the formation of CK, eij values are determined from 

e i j=  pT[pj]Kij[pj]Tpi i E C t , j  E Cj ,  (39) 

and such values are included in (38). 
Cluster 8 is then rotated onto cluster 7 using Ps 

which is the bottom eigenvector of K87, giving a final 
mean-square residual, mRS, over the entire ensemble of 
(E87 d - E s - t - S T ) / 1 0 .  The expressions thus developed for 
Ks7 and KTS correspond to (21) with [/)1] -- [ll2] : I. 

In the second variant of the algorithm, revisions are 
made to the internal orientations of each structure within 
a cluster during the annealing step, which means that 
cumulative procedures cannot be used, the rotations 
pj, j E Cj and [Pt]Pi, i E Ct must be replaced by 
the revised values and matrices K t j  must be calculated 
from (21) after each cluster is formed and annealed, 
for all the remaining cluster pairs for which the newly- 
formed cluster, CK, is one of the pair, because the 
least eigenvalues of these matrices must be scanned to 
select clusters for subsequent unions. The commutation 
property of [.] and (.) matrices enables (21) to be 
evaluated with n l  sums of n j  terms followed by one 
sum of n t terms, or vice versa, regardless of the order 
of events leading to the current situation. 

If annealing is being done and constellations are to 
be calculated then, on formation of CK, eij must be 
evaluated for all i E CK and j C CK. With or without 
annealing, the E array is ultimately fully populated with 
e values if constellations are being calculated, and is 
vacated if not. 

Constellations 

A structure of m atoms, normally represented by m 
vectors in three dimensions, may alternatively be rep- 
resented by a single vector in 3m dimensions. Further- 
more, n structures may be represented by a constellation 
of n points in 3m dimensions, and the entire constella- 
tion may be represented without distortion in a space 
of (n - 1) dimensions. For n values up to about 10 it 
is also frequently the case that a projection of such a 
constellation into two or three dimensions involves little 
loss of information, and may be graphically displayed. 
This principle has been exploited in a different context, 
for example, by Frank (1990), and in the present context 
by Sutcliffe (1993). 

The value of such constellations arises because dis- 
tances between points in the constellation, when suitably 
scaled, are the r.m.s, differences between the correspond- 
ing structures, and because the cosine of the angle be- 
tween two vectors in the constellation is the correlation 
coefficient of the inter-structure differences represented 
by those vectors. The calculation of such constellations 
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is described by Diamond (1974) (§4) for the case in 
which one of the structures is placed at the origin of the 
constellation. However, for cluster CK, the centroid of 
the structures may be placed at the origin by evaluating 

f~= 1__1_ Z eij 
n K  j E C x  

-s=l  z s,, 
n K  iECK 

i E  OK 

(40) 

and a matrix STS with elements 

( f i  + f j  -- -- e i j ) .  (41) 7 

Then if A is orthogonal and A diagonal such that 

A = A T s T s A ,  (42) 

a n d  
C = A½A T, (43) 

then C contains, as columns, the position vectors of 
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(a) (b) (c) 
Fig. I. (a), (b) and (c). Dendrograms for the clustering of 21 structures by each of the criteria R1, R2 and R4, respectively, the values of which 

are plotted horizontally in A. Structures are identified by numbers on the right and resulting clusters are identified by cluster numbers to the right 
of each node, beginning with cluster 22. See the text for a discussion of the differences. [The criteria are defined by (42,24), (25) and (27).] 

39 o 4 

oG 

(a) 

io~ -~oQ 
I 

(b) (c) 
Fig. 2. (a), (b) and (c). Principal projections of the constellation corresponding to cluster 39 in each of Figs. l(a), l(b) and l(c). Numbered 

points correspond to the corresponding structures, which are enclosed in numbered regions corresponding to the clusters formed. Although 
the numbered points are in the same positions in each of these diagrams the resulting groupings differ. Horizontal and vertical scales are 
in ,~ with the origin at the centroid. 
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each of the points in the constellation representing CK. 
It is convenient to arrange the columns of A so that 
the eigenvalues in A are presented in decreasing order, 
so that the first p components of each vector in C 
provide the dominant projection of the constellation in 
p dimensions, and the ratio 100)-'~i= l p  A i i /  Ei=I'~ Aii is a 
percentage expressing the extent to which the projection 
represents the entire constellation. 

From expression (41) it is clear that STS is rank 
deficient, [any row (column) is minus the sum of all 
other rows (columns)] and, therefore, has at least one 
vanishing eigenvalue, and the nKth component of each 
column of C is, therefore, zero. 

The matrix S, though never computed, has 3m rows 
and nK columns, the ith column containing the coor- 
dinates of structure i expressed relative to the mean 
structure. Thus, STS is positive semi-definite for any 
set of coordinates. Replacing e values by E0 values, for 
example, would enable a constellation to be computed 
which would express similarities among the initial orien- 
tations. Using the E values in (29), however, may lead 
to negative eigenvalues in (42), because these E values 
are not simultaneously attainable and do not correspond 
to a situation in which each structure is represented by 
a single set of coordinates. 

Examples 
The examples are taken from studies of proteins known 
as the high-mobility group, HMG-D [Jones et al. (1994) 
to whom I am indebted for the use of the coordinates] 
and the related B domain of rat HMG-1 (Weir et al., 

1993). Sixteen HMG-D and five HMG-1 structures to- 
gether form a single ensemble in this example. 

Figs. 1 (a), 1 (b) and 1 (c) show trees developed without 
annealing for 21 structures derived from n.m.r experi- 
ments using 117 main-chain atoms (Ca, C and N only) 
from each structure, basing the clustering on Rx, R2 and 
R4, respectively. The trees are similar but not identical. 
The n-dependence given in (43,26) means that clustering 
based on R2 tends to favour the initiation of new small 
clusters in preference to augmenting existing large ones, 
as illustrated by structures 14 and 15 forming cluster 28 
by themselves in Fig. l(b), whereas in Fig. l(a) these 
two structures form successive addends to a pre-existing 
cluster. This tendency becomes more marked as the size 
of the tree increases. 

With R4 the similarity or otherwise of clusters 1 and 
J, rather than the compactness of the resulting cluster 
K, determines clustering. This engenders a tendency to 
postpone the incorporation of 'outliers'. For example, in 
Fig. l(a), structure 21 unites with cluster 36 (already 
containing ten structures) to produce cluster 38, with a 
resulting increase in R1 from 0.71 to 0.81/~, which is 
a substantial change to attribute to a single structure. 
However, in cluster 38 the ten interactions between 
structure 21 and the structures within cluster 36 are 
diluted by the 45 interactions within cluster 36 when 
evaluating/~1 for cluster 38. When R4 is the clustering 
criterion no such dilution takes place, only the ten 
interactions between structure 21 and the structures in 
cluster 36 are considered, all of which are large, as a 
result of which structure 21 is not united with cluster 
36, and its incorporation is postponed. 

41 / 

37 

1 

34 
o. 9 

-70 .9  

-0 .6  

36 

40 

38 

I I 

Fig. 3. Principal projection of the 
constellation of cluster 41 in Fig. 
I(a). The orientation of the con- 
stellation is dominated by the 
distance between cluster 37, con- 
taining the rat structures, and 
cluster 40, containing all others. 
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All three trees indicate that the five structures 4, 7, 10, 
16 and 19, in the lower part of the tree, are substantially 
different from all other structures. These five structures 
have a different origin, being those of the B domain of 
rat HMG-1 (Weir et al. ,  1993) and the clustering has 
detected that they form a separate family within the 
ensemble. 

In all three figures cluster 39 contains the same 15 
structures (all from HMG-D) and, therefore, if annealed, 
can be represented by the same 14-dimensional con- 
stellation. In this instance the structures are sufficiently 
similar that the annealing step makes a negligible dif- 
ference, and the three constellations may be regarded 
as the same. The dominant two-dimensional projections 
of these constellations are shown in Figs. 2(a), 2(b) 
and 2(c), for which 62.3% of the squared coordinates 
lie in the plane of the paper. In these diagrams each 

and 116 particularly. The differences between structure 
21 and ten other structures at cluster 38, discussed above, 
exceed 3/~, at atom 65. Such a plot may draw attention 
to regions where stereochemical differences would be 
worth examining visually. I am indebted to Dr A.D. 
MacLachlan for suggesting this form of output. 

APPENDIX 

Using A to represent the three-dimensional vector con- 
sisting of the first three components of p, [c.f. (1,2)], 
and defining 

A =  - 0 A 
-,~ 0 

(nl) 

we find that the product 

--SpAp O'p \ --Sq~q O'q = 

f ( (O'pO'q -- ,~Tp ,~q ) l  -- O'qJ~p - O'pl~q "3 L ,~q,~T __ ,~pSpSq,~T) ((,~p X ,~q )Sq Jr ,~qO'pSq Jr ,~pO'qSp ) ~ 

k --((,~p X ,~q)Sp Jr ,~qO'pSq -4- ,~pO'qSp)T (O'pO'q -- 8p,~T,~qSq) J " 
(A2) 

structure is represented by a numbered point, and the 
envelopes enclosing each cluster are also shown and 
numbered. These diagrams serve to show how trees 
with differing connectivities may yet be consistent with 
a single constellation. In this instance the structures 
involved are sufficiently similar to present almost the 
same principal projection when calculated from the 
pairwise residuals of (29). 

In Fig. 3 the two-dimensional projection of the 20- 
dimensional constellation corresponding to cluster 41 of 
Fig. l(a) (all 21 structures) is shown. In this figure the 
separateness of cluster 37, containing the rat structures, is 
evident and its distance from all other structures is such 
that its position in 20-dimensional space is the principal 
determinant of the long axis of the constellation, and 
hence of its dominant projection. Consequently cluster 
39 is seen somewhat 'edge-on' in this projection with 
consequential overloading of detail in the diagram. In 
this instance 59.0°-/o of squared coordinates are in the 
plane of the paper, and the 41% not represented in the 
diagram is sufficient to obscure much detail and, thus, 
to limit its usefulness. 

Cross-term errors for each of the 117 atoms in the 
structures are shown in Fig. 4. The figures on the left are 
cluster numbers for the tree of Fig. 1 (a), whilst the two 
rows of figures on the right are lists of structures in each 
of the two clusters being united to form the new cluster. 
Only differences as between structures on the upper row 
and on the lower row contribute to this measure. The 
graph for cluster 34, for example, shows that structure 7 
differs from structures 10, 16 and 19 around atoms 18, 45 

Setting sp = Sq = +1 shows that the product of two 
[.] matrices is a [.] matrix with p vector given by (11) 
of Diamond (1992). 

Setting sp = Sq = - 1  shows that the product of two 
(.) matrices is also a (.) matrix with the same p. 

: : 
/ V ~ ~ ~ A~A 

36,"- -  ^ I ~" f-x ~ . ,,~ ^_ l t ~  A . . / '~1315912141520 

34 ~ "  "-'," ^ " - ~  ~ ~ , ~ - J  ~77o ,6, 9 

33  [_  ,/---",., f ' -~_~v- '  , - ~ ' ~  5 ,4,5 

29  ' ^ " ~3220 

27 ~ ~ . ~ F - ' , - . ~ " ~ ' ~ " - , . ' "  'v- G 

25 v ~ 2 3  

24 67 

23 ;6 

2 2 .  . - - - q - -  i i i . ~- [ -  ~- ~ ~  ~-~121 

0 10 20 30 40 50 60 70 80 90 100110120 

Fig. 4. The quantity [( l l / lZ 1) -1 El, E(; I Eqe('! Ir.p - r~,ql2] ½ plotted 
as a function of the atom number, a, as each cluster CK is formed by 
the criterion R1. K values are shown on the left and p and q values 
(relating to individual structures) are listed in two rows on the right of 
each plot. The base line spacing is 1 A. Such plots serve to identify 
regions of difference. 
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Setting p = 2, q = 1,Sp -- + l , s q  = - 1  gives an 
expression for [P2](Pa), and setting p = 1, q = 2, % = 
- 1 ,  Sq = +1 gives an expression for (Px)[P2] which is 
found to be the same expression. Therefore any [.] matrix 
commutes with any (.) matrix. 

Setting pp = pq, Isp] = 1 and sp = -Sq  gives (32) 
of Diamond (1992). 

It has been shown that the bottom eigenvector of 
the expression (15) provides the further rotation of the 
rotated B structure to fit the rotated A structure. The 
remaining three eigenvectors, which are not required 
for clustering purposes, provide further rotations of the 
rotated B structure onto the rotated A structure which 
result in stationary values of E,  namely a maximum, 
a pass and a pale. However, it may be of interest in 
other applications to use all four eigenvectors to control 
rotations of both structures simultaneously in the manner 
outlined below. 

Let A be orthogonal with positive determinant such 
that 

]CBA = A ( p B ) [ P A I K , A [ P A ] T ( p , ) : r A  "r (A3) 

is diagonal, rows of A being the eigenvectors. A ,  being 
orthogonal, has six degrees of freedom because, for 
example, specifying the six off-diagonal elements in 
the lower triangle of A is sufficient to determine the 
remaining ten elements. (.) and [.] matrices, by contrast, 
each have only three degrees of freedom, being functions 
only of A, #, u and cr which are not independent. The 
product (PB)[PA] has six degrees of freedom and no 
special structure other than being orthogonal, and may 
therefore be regarded as representing the general form 
of a 4 × 4 orthogonal matrix with positive determinant. 
Consequently A may be factorized according to 

A = (Pb)[Pa] = [Pa](Pb) = 

a l l  a12 a13 a14 / 
a21 a22 a23 a24 
a31 a32 a33 a34 
a41 a42 a43 a44 

(A4) 

and Pa and Pb may be derived from A by forming the 
product as in (A2) and inverting. The result is, 

( AaAb #aub U~ab aa#b ) 
#a#b )~aOrb O'allb 1JaAb __ 
l~al~'b O'aAb Aa#b #atYb -- 
aaab u,,IZb IZ~Ab A~Ub 

(1 1 1)lax a23 a34 a42) 
! - 1  1 - 1  1 /a22 a14 a43 a31 
4 1 - 1 1 1 ~a33 a41 a12 a24 ' 

1 1 1 1 \a44 a32 a2l a13 

(AS) 

from which both p,, and Pb may be extracted, with a 
single ambiguity of sign, using pYp  -- 1. Hence, (A3) 
becomes 

i~ ,A  =(pb)[pa](pB)[pA]KBA[PA] T (PB) T [pa]T (Pb) T 

= (p~) [po]K BA [p,,]T (pf/)T, 
(A6) 

in which 

<o;,) =(m)(p,) 
[pc ] = [Pa] [PA]. 

(A7) 

Thus, the eigenvectors of 1CB3, which are the columns 
of the identity, specify the further rotations of the (twice) 
rotated B structure onto the (twice) rotated A structure 
which lead to the four stationary values of E,  and the 
rotations so specified are 180 ° rotations about each of 
the axes of the coordinate system, and the identity. Thus, 
A may be used to orient both structures simultaneously 
with these special rotation axes aligned on the coordinate 
axes. Note that because K~B,a is diagonal /UreA = ~,BA 

by (20,22), so that the foregoing statements concerning 
the further rotation of structure B are equally true of 
structure A. 
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